|
Endocrine disruptors are chemicals that, at certain doses, can interfere with the endocrine (or hormone) system in mammals. These disruptions can cause cancerous tumors, birth defects, and other developmental disorders. Any system in the body controlled by hormones can be derailed by hormone disruptors. Specifically, endocrine disruptors may be associated with the development of learning disabilities, severe attention deficit disorder, cognitive and brain development problems; deformations of the body (including limbs); breast cancer, prostate cancer, thyroid and other cancers; sexual development problems such as feminizing of males or masculinizing effects on females, etc. Recently The Endocrine Society released a statement on Endocrine-Disrupting Chemicals specifically listing obesity, diabetes, female reproduction, male reproduction, hormone-sensitive cancers in females, prostate cancer in males, thyroid, and neurodevelopment and neuroendocrine systems as being effected biological aspects of being exposed to EDCs. The critical period of development for most organisms is between the transition from a fertilized egg into a fully formed infant. As the cells begin to grow and differentiate, there are critical balances of hormones and protein changes that must occur. Therefore, a dose of disrupting chemicals may do substantial damage to a developing fetus. The same dose may not significantly affect adult mothers. There has been controversy over endocrine disruptors, with some groups calling for swift action by regulators to remove them from the market, and regulators and other scientists calling for further study. Some endocrine disruptors have been identified and removed from the market (for example, a drug called diethylstilbestrol), but it is uncertain whether some endocrine disruptors on the market actually harm humans and wildlife at the doses to which wildlife and humans are exposed. Additionally, a key scientific paper, published in the journal ''Science'', which helped launch the movement of those opposed to endocrine disruptors, was retracted and its author found to have committed scientific misconduct. Found in many household and industrial products, endocrine disruptors are substances that "interfere with the synthesis, secretion, transport, binding, action, or elimination of natural hormones in the body that are responsible for development, behavior, fertility, and maintenance of homeostasis (normal cell metabolism)." They are sometimes also referred to as hormonally active agents, endocrine disrupting chemicals, or endocrine disrupting compounds (EDCs).〔(【引用サイトリンク】 Endocrine Disrupting Compounds )〕 Studies in cells and laboratory animals have shown that EDs can cause adverse biological effects in animals, and low-level exposures may also cause similar effects in human beings. The term ''endocrine disruptor'' is often used as synonym for xenohormone although the latter can mean any naturally occurring or artificially produced compound showing hormone-like properties (usually binding to certain hormonal receptors). EDCs in the environment may also be related to reproductive and infertility problems in wildlife and bans and restrictions on their use has been associated with a reduction in health problems and the recovery of some wildlife populations. ==History== The term ''endocrine disruptor'' was coined at the Wingspread Conference Centre in Wisconsin, in 1991. One of the early papers on the phenomenon was by Theo Colborn in 1993. In this paper, she stated that environmental chemicals disrupt the development of the endocrine system, and that effects of exposure during development are often permanent. Although the endocrine disruption has been disputed by some, work sessions from 1992 to 1999 have generated consensus statements from scientists regarding the hazard from endocrine disruptors, particularly in wildlife and also in humans. The Endocrine Society released a scientific statement outlining mechanisms and effects of endocrine disruptors on “male and female reproduction, breast development and cancer, prostate cancer, neuroendocrinology, thyroid, metabolism and obesity, and cardiovascular endocrinology,” and showing how experimental and epidemiological studies converge with human clinical observations “to implicate EDCs as a significant concern to public health.” The statement noted that it is difficult to show that endocrine disruptors cause human diseases, and it recommended that the precautionary principle should be followed. A concurrent statement expresses policy concerns. Endocrine disrupting compounds encompass a variety of chemical classes, including drugs, pesticides, compounds used in the plastics industry and in consumer products, industrial by-products and pollutants, and even some naturally produced botanical chemicals. Some are pervasive and widely dispersed in the environment and may bio-accumulate. Some are persistent organic pollutants (POP's), and can be transported long distances across national boundaries and have been found in virtually all regions of the world, and may even concentrate near the North Pole, due to weather patterns and cold conditions.〔(【引用サイトリンク】 Cold, Clear, and Deadly )〕 Others are rapidly degraded in the environment or human body or may be present for only short periods of time. Health effects attributed to endocrine disrupting compounds include a range of reproductive problems (reduced fertility, male and female reproductive tract abnormalities, and skewed male/female sex ratios, loss of fetus, menstrual problems); changes in hormone levels; early puberty; brain and behavior problems; impaired immune functions; and various cancers. One example of the consequences of the exposure of developing animals, including humans, to hormonally active agents is the case of the drug diethylstilbestrol (DES), a non-steroidal estrogen and not an environmental pollutant. Prior to its ban in the early 1970s, doctors prescribed DES to as many as five million pregnant women to block spontaneous abortion, an off-label use of this medication prior to 1947. It was discovered after the children went through puberty that DES affected the development of the reproductive system and caused vaginal cancer. The relevance of the DES saga to the risks of exposure to endocrine disruptors is questionable, as the doses involved are much higher in these individuals than in those due to environmental exposures. Aquatic life subjected to endocrine disruptors in an urban effluent have experienced decreased levels of serotonin and increased feminization. In 2013 the WHO and the United Nations Environment Programme released a study, the most comprehensive report on EDCs to date, calling for more research to fully understand the associations between EDCs and the risks to health of human and animal life. The team pointed to wide gaps in knowledge and called for more research to obtain a fuller picture of the health and environmental impacts of endocrine disruptors. To improve global knowledge the team has recommended: * ''Testing: known EDCs are only the 'tip of the iceberg' and more comprehensive testing methods are required to identify other possible endocrine disruptors, their sources, and routes of exposure. * ''Research: more scientific evidence is needed to identify the effects of mixtures of EDCs on humans and wildlife (mainly from industrial by-products) to which humans and wildlife are increasingly exposed. * ''Reporting: many sources of EDCs are not known because of insufficient reporting and information on chemicals in products, materials and goods. * ''Collaboration: more data sharing between scientists and between countries can fill gaps in data, primarily in developing countries and emerging economies.'' 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Endocrine disruptor」の詳細全文を読む スポンサード リンク
|